★阿修羅♪ > 近代史3 > 332.html
 ★阿修羅♪
▲コメTop ▼コメBtm 次へ 前へ
塩はヒマラヤ・ブラック岩塩を使おう
http://www.asyura2.com/18/reki3/msg/332.html
投稿者 中川隆 日時 2019 年 4 月 08 日 11:21:54: 3bF/xW6Ehzs4I koaQ7Jey
 

(回答先: 不健康な食生活で寿命が縮む……最大の原因は塩分 投稿者 中川隆 日時 2019 年 4 月 07 日 14:55:47)


塩はヒマラヤ・ブラック岩塩を使おう


ブラック岩塩(ブラックソルト)はお風呂に入れると、温泉特有の硫黄の香りがたちこめ、硫黄泉・アルカリイオン泉・食塩泉の3つの温泉気分が楽しめます。まるで温泉地に来たかのような気分になりリラックスさせてくれます。

硫黄成分以外にも各種ミネラルを豊富に含有しています。食用としてもご賞味いただけますが硫黄成分が多いためワイルドな味となります。硫黄の香りが強い場合はピンク岩塩とブレンドしてご賞味下さい。


岩塩は大きめなのを買って、使う度にミルで粉末にしないとすぐに酸化して劣化するので注意:

食用・ブラック岩塩約3mm〜8mm 1kg
販売価格 945円
税別価格 875円
http://ganen.chu.jp/2.html


セラミックソルトミル
販売価格 680円
税別価格 630円
http://ganen.chu.jp/10_661.html
https://www.amazon.co.jp/s/?ie=UTF8&keywords=%E3%82%BD%E3%83%AB%E3%83%88%E3%83%9F%E3%83%AB&tag=asyuracom-22&index=aps&field-adult-product=0&hvadid=48800443657&ref=pd_sl_4fg2pjm6gz_e


ヒマラヤ岩塩


先日、南港の癒しフェアーに行きました。

そこで、ヒマラヤ岩塩を置いているコーナーに ふと止まりました。

別にたいしたことないものだろうと思っていたら目の前で、ORPメーターで酸化還元電位を測定しだしました。水道水はプラス300mVくらいです。

岩塩を一さじくらい入れて、混ぜて、

ちょっとしか溶けていない段階で 何とマイナス200mV

みな溶けたら、マイナス300mVくらいになるそうな。

これには驚き。 思わずちょっと購入してしまった。購入したのは、入浴用でしたが、 食用もあり、 これは硫黄の味がする。 何となくおいしい。
ヒマラヤ岩塩、見直しました。
http://plaza.rakuten.co.jp/prunelle/diary/200703150000/


最近になって天然水の酸化還元電位を驚異的に低下させる方法を見つけました。その方法は

「**岩塩」と称する物質の粉末を少量、水に溶解させる方法です。

この物質は岩塩を一度溶解させてから再結晶させて粉末にした物です。岩塩ですから99.99%は食塩(塩化ナトリューム)で不純物としてカリューム、マグネシュームなどが極めて少量混入しています。この物を2リットル・ボトル入りのミネラル水に耳掻き一杯ほどの量を溶解させると酸化還元電位は見る見る低下して100ミリボルト程度となり更に混入量を少し増量すると酸化還元電位がマイナスの領域まで低下します。しかも溶解量が少量である為に水は塩味が感じられません。

この現象のメカニズムはまだ解明するに至ってはいませんが驚異的な効果というべきであり、人体の生理に良い影響を与え、医療ももてあましている難病に効果を発揮するのではないかと期待されます。病気の半数は内臓器官や局部に炎症症状を伴うもので言うなれば肉体の局所的な火災ともいえるものであり、その局所では酸化作用が高まっていると考えられるのです。その症状を沈静させるには還元性の高い水の摂取が病状を沈静させると考えられます。
http://www.ab.auone-net.jp/~nets-t/15mizu01.html


但し、ヒマラヤ岩塩なら何でも良い訳ではなく、硫黄入りヒマラヤ岩塩(黒い色をしている)だけが酸化還元電位を低下させるという事みたいですね。


酸化還元電位については

癌に効く温泉・・アトピーに効く温泉
http://www.asyura2.com/09/reki02/msg/357.html

酸化還元電位測定試験 試験項目 酸化還元電位(mV)

ヒマラヤ岩塩(スタンダード) +194〜+266

ヒマラヤ岩塩(硫黄入り) −515〜−340

水道水 +500〜+700

ミネラルウォーター +200〜+300


 測定装置 :  アメリカ製ピンポイントORPモニター
 試験方法 :  水道水200ccに岩塩ひと摘みを溶かし酸化還元電位を測定した。

http://www.onsensetubi.co.jp/ganen.html


ブラック岩塩(ブラックソルト)はお風呂に入れると、温泉特有の硫黄の香りがたちこめ、硫黄泉・アルカリイオン泉・食塩泉の3つの温泉気分が楽しめます。まるで温泉地に来たかのような気分になりリラックスさせてくれます。 硫黄成分以外にも各種ミネラルを豊富に含有しています。食用としてもご賞味いただけますが硫黄成分が多いためワイルドな味となります。硫黄の香りが強い場合はピンク岩塩とブレンドしてご賞味下さい。


ブラック岩塩3-6cmにて酸化還元電位測定実験


一般の水道水は600mv前後になります

ブラック岩塩3-6cmタイプ1個投入 約1分-315mv計

約20分後-568mv計測

http://ganen.chu.jp/2.html


酸化還元電位(ORP) と硫黄の匂いの関係


硫黄泉は独特の匂いや乳白色の濁り湯で人気が高いのにくらべて、おおむね無色無臭でつかみどころのない硫酸塩泉はどうも不人気です。(筆者は隠れ硫酸塩泉ファンですが・・・)。

硫黄泉をつくるのは「硫化水素」、硫酸塩泉をつくるのは「硫酸イオン」で、どちらにも「硫」の字が入っていますから、硫黄(S)を含む成分だということは容易に想像できます。同じ硫黄の成分なのにどうして2つに分かれているのでしょう? また、温泉のできかたには何か大きな違いがあるのでしょうか?


イオウ化学種の変化

イオウの化学種はとても多様で40種以上も知られていますが、温泉に関係するおもな9種は酸化数の違いとして以下のように分けられます。

硫黄泉をつくる「硫化水素」は酸化数のいちばんマイナス側、

硫酸塩泉をつくる「硫酸イオン」は最もプラス側にあります。


  酸化数 : 化合物・イオン(*は温泉分析の項目には含まれない)

  -2 : 硫化水素(H2S)、 硫化水素イオン(HS-)、 硫化物イオン(S2-)
   0 : 単体イオウ(S)*
  +2 : チオ硫酸イオン(S2O32-) 
  +4 : 亜硫酸ガス(SO2)* 
  +6 : 硫酸(H2SO4)、 硫酸水素イオン(HSO4-)、 硫酸イオン(SO42-)


酸化数とはひとことでいうと原子のなかの電荷の過不足です。イオウ原子核のまわりには通常で16個の電子(マイナス電荷)がまわっていて、最外殻には6個の電子が含まれます。ところがこの電子の数はあんまり安定な状態ではないので、周囲の環境(酸化還元状態)によって出たり入ったりします。電子(e-)が1個加わるとマイナス電荷が1増えて原子全体の電荷は(-1)になります。反対に電子が1個出ていくとマイナス電荷が1減って原子全体では(+1)になります。

最外殻電子の数は0か8個がいちばん安定した状態なので、イオウの場合は酸化数(-2)か(+6)の範囲をとります。とはいえ、水溶液中ではあまりに電荷が正負に偏るのは許されないので、水素(H)や酸素(O)がくっついた化合物や分子イオンとして電子を融通しあい、総電荷が極端にならないようにして存在します。

同じ酸化数でのイオウ化学種の変化は以下のようになります。これは水素との結びつき具合が変わるだけなので、pHに依存しています。酸性では式の左辺が出やすく、アルカリ性では右辺が出やすいことになります。下図にはpHが変わるときにそれぞれの量比(mol比)がどのようになるか示してします。


  酸化数(-2)のとき 硫化水素系列     H2S    HS- + H+    S2- + H+   ・・・(1)

  酸化数(+6)のとき 硫酸系列      H2SO4    HSO4- + H+    SO42- + H+  ・・・(2)


図5-7-1-1 pHが変わるときの各成分の量比  左:硫酸系列  右:硫化水素系列


それでは異なる酸化数のあいだの関係はどうなるでしょう。酸化数(-2)の硫化水素系列と、酸化数(+6)の硫酸系列は次のような反応になります。電子(e-)の出入りを伴ってくることが(1)(2)との大きな違いですので、水溶液の酸化還元電位によって状態が変わってきます。酸化環境であるほど反応は右に進みます。


  H2S + 4・H2O    HSO4- + 9・H+ + 8・e-  ・・・(3)

  HS- + 4・H2O    SO42- + 9・H+ + 8・e-  ・・・(4)


さて、これまでのような関係を一枚の図にまとめると下のようになります。横軸にはpH、縦軸には酸化還元電位(Eh)をとってあります。各成分の境界ライン(青線)は、それぞれの濃度(mol濃度)が等しくなるところです。ラインをまたぐといきなり全部がぱっと変わってしまうわけではありません。

硫化水素系列の存在できる範囲は意外に狭く、反対に硫酸イオンの存在範囲がとても広いことがわかります。また、図中には単体イオウ(S)が固体として共存できる範囲も示していますが、硫化水素が酸化をうけて硫酸イオンに変わる途中で出てくることがわかります。実際には硫化水素と硫酸イオンの間には、酸化数の異なるさまざまな物質が中間的にできてくるので、これが硫黄泉の多様な色や匂いのバリエーションに関係してくるのかもしれません。


図5-7-1-2 イオウ化学種の pH - 酸化還元電位 安定関係


酸化還元電位(ORP)についてもちょっと説明しておきましょう。

古典的な化学では、物質が酸素と結びつくことを酸化(oxidation)といい、反対に酸素が奪われることを還元(reduction)と解釈していました。たとえば

金属マグネシウムが空気中で燃焼すること(A)は典型的な酸化の反応で、

酸化銅が水素ガスに触れて金属銅になること(B)は典型的な還元の反応

とされました。どちらも理科の実験でおなじみですね。


  2・Mg + O2 → 2・MgO ・・・(A) 

  CuO + H2 → Cu + H2O ・・・(B)


我々の生活環境では酸素がたくさんあるので、こういう解釈でも実用的にはまったく問題ないのですが、幅広い環境条件を扱うようになるとこれではいささか不都合になります。そこで現代の化学では、

物質が電子を失うことを酸化、

電子が獲得することを還元

というようになりました。上の(A)式の反応では、左辺の金属マグネシウムは単体なので酸化数は(0)ですが、右辺では酸素と結ばれたので酸化数は(+2)になり電子を2個ぶんだけ失っています。その電子はどこにいったかというと、結ばれた酸素原子が単体(0)から酸化数(-2)のO2-になることに使われたのです。酸素の側から見ると電子を獲得したことになるので、(A)式は酸素の還元反応といいかえることもできます。


さて、水溶液に含まれる物質のあいだで酸化還元反応がおこるときには、水じたいも電子のやりとりに加わって次のような状態変化を起こしていきます。

(C)は甚だしい酸化環境のとき水分子か電子を失って気体酸素が遊離する反応(酸化分解)で、(D)は甚だしい還元環境のとき水素イオンが電子を獲得して水素ガスが遊離する反応(還元分解)です。


  2・H2O → O2 + 4・H+ + 4・e- ・・・・(C) 

  2・H+ + 2・e- → H2 ・・・・(D) 


どちらの状態になっても水はもはや液体として存在できませんから、我々の周囲にある水は(C)(D)の中間のどこかにあります。

ここでは電子(e-)の活発さが決め手ですから、水溶液中で遊んでいる電子の量(電位)を測ってやれば、水の酸化還元状態を示すことができます。

これが酸化還元電位(ORP)で、標準水素電極をゼロ基準とした電位(Eh)の正負で表します(単位はmV)。


ORPの数値がプラス側ほど水溶液は酸化状態、マイナス側ほど還元状態になります。


温泉水の酸化還元電位(ORP)


温泉水が通常の水とかなり異なる酸化還元状態にあることはなんとなく予想されていましたが、実際の測定例は少なく、実態はよくわかりませんでした。最近になって温泉の療養効果と関係があるかもしれないという観点からの研究が行われるようになり、大河内(2002)などの論文にまとめられています。

下図ではその論文の挿入図から源泉湧出直後と貯湯直後の値をリライトしてのせてみました(青点)。赤線は大気下の通常水(水道や飲料水)のラインで、温泉は通常水よりも還元性を示すものが多いことがよくわかります。

なかには極端に還元性の値を示すものがあり、上の図と比較してみると、こういう温泉水には硫化水素が存在できて硫黄泉になっているものと思われます。

大河内の本論では温泉水の老化(エージング)について言及しており、源泉を放置した後のORP測定値は通常水とほとんど同じになってしまうことが明らかです。
このような状態だと硫化水素は存在できないので、単体硫黄(湯の花)として析出沈殿してしまうか、硫酸イオンに変わってしまうものと考えられます。多くても数10mg/kgくらいの硫化水素がまるごと硫酸イオンに変わってしまえば、それは普通の水とたいした違いはなくなってしまいますね。


図5-7-1-3 温泉水の pH – ORP の測定例 大河内(2002)より


最近は「マイナスイオン水」と称するものがヒット商品になっていて、ORPの数値がかくもマイナスであるという表示がされています。図の水の酸化・還元分解領域のライン(緑線)がpHによって傾いていることで明らかなように、ORPの数値だけでは還元性の程度を表現できないのでこれは無意味です。
http://www.asahi-net.or.jp/~ue3t-cb/bbs/special/sience_of_hotspring/sience_of_hotspring_5-7-1.htm


ヒマラヤ岩塩なら何でも良い訳ではなく、硫黄入りヒマラヤ岩塩(黒い色をしている)だけが酸化還元電位を低下させるという事みたいですね。

なお、この事を伏せて、自分の会社で特別な方法で精製したヒマラヤ岩塩だけが酸化還元電位を低下させると宣伝しているボッタクリ業者が多いので気を付けましょう


ここは良心的ですね。

ヒマラヤ岩塩専門店ブラック岩塩
http://ganen.chu.jp/
http://ganen.chu.jp/2.html


ヒマラヤ岩塩はパウダーで買うと直ぐに劣化してしまうので、塊になったものを買って、使う度におろした方がいいです。
 

  拍手はせず、拍手一覧を見る

コメント
1. 中川隆[-10682] koaQ7Jey 2019年4月10日 09:13:07 : b5JdkWvGxs : dGhQLjRSQk5RSlE=[1359] 報告

✤調味料の安全な食べ方

  ✲塩・・・多く摂り過ぎると、人体を危険にさらす

  最近、様々な自然塩が出回っています。どの塩も、食品添加物などの不安はありません。「食塩」は、イオン交換膜製法で作られています。これは、海水に溶けているプラスイオンのナトリウムとマイナスイオンの塩素を電気的に海水から集めて、ナトリウム塩素とするものです。塩化ナトリウム分が高く(99%)、昔の塩のようにマグネシウム、カリウムといったミネラル分(にがり分)は殆ど含まれていません。「天日塩」は、オーストラリアやメキシコの塩田で海水を自然乾燥させた天日塩を輸入。

  水に溶かし、不純物を取り除いて再生したものです。地域名をつけて○○塩とうたった塩も売られています。しかし、実際にその地域で、塩田法にのっとって作られた自然塩は、殆どないと考えてよいでしょう。また、最近、海洋深層水塩が話題になっています。海洋学で海洋深層水といえば、深さ3000〜5000m程度の海水のことですが、現在、一般的には深さ300m程度の水を指しているようです。さて、世間で言われているように、この海洋深層水塩は、自然塩の中で最も効率的にミネラル(Mg、Ca)を補給できるのでしょうか?私達の1日の食塩の摂取量(塩分とは違う)を、多くても2gとします。その2gを深層水塩で摂ると、カルシウムの摂取量は成分計算から31mgとなります。これは、30〜49才の日本人栄養所要量である600mgの1/200です。含有量が多いと言われるマグネシウムでも、1日栄養所要量の約1/13にしかならないのです。

  このように考えてみると、塩からミネラル分を補おうとするには無理があることが分かります。どのタイプの塩を選んでも左程変わりはありません。

  後は、味などの好みの問題でしょう。高いお金を出してまで選ぶ意味は小さいと思います。栄養については、ミネラルの心配するより、塩の摂り過ぎに注意することの方が大切ではないかと思います。尚、2002年固結防止剤として、フェロシアン化合物が許可されました。健康への悪影響はないようです。
http://www.long-life.net/new_page_804.htm
http://www.long-life.net/new_page_805.htm
http://www.long-life.net/new_page_806.htm
http://www.long-life.net/new_page_807.htm

2. 中川隆[-11186] koaQ7Jey 2024年3月23日 06:25:25 : FaIJUUkrtw : YVRLdUtqb0xCN2s=[2] 報告
知らないと損!岩塩と海塩の違い
ハチミツ栄養療法医やすこDr.の健康ちゃんねる
2022/02/11
https://www.youtube.com/watch?v=oA_5DPDYEww&list=PLj3-xAkTFU9VMI0zo2Yy2vAfFFLKlvxJD&index=5

あなたはお料理の時
どんな塩を使っていますか?

塩は私達が生きていくのに必須のものです。

そして、スーパーに行くと
たくさん色々な塩の種類があって、
値段もピンからキリまで・・・

どれを選ぼうか迷ったりしませんか?

今回の動画
・岩塩とは何か
・岩塩に合う料理とは
・海塩の種類
・天然塩を料理に取り入れるポイント
・減塩塩は、要注意
・減塩塩を取ってはいけない方について

塩事業センターの食塩を使うとミネラル欠乏症になる
http://www.asyura2.com/09/revival3/msg/727.html

3. 中川隆[-11060] koaQ7Jey 2024年3月30日 22:36:31 : pPdttP3J2E : QU56b3ExMDk2dm8=[5] 報告
塩の選び方(気軽に使える塩、栄養補給になる塩の選び方)
あこの栄養学チャンネル【女性のための栄養学】
2023/09/30
https://www.youtube.com/watch?v=ZHlxUkJwmrY

今日は塩の選び方についてまとめました!
何を選んだらいいのかわからない、って方の参考になればうれしいです。

0:00 今日のお話
0:55 たった1つのポイントとは
1:35 精製塩について
3:37 再製塩について
6:27 天然塩について
9:18 岩塩について
11:15 原材料について

【再製塩】
あらしお
https://amzn.to/46aA6zz

シママース
https://amzn.to/3ZzG62k

【天然塩】
海の精あらしお
https://amzn.to/48rAn2u

ホッティーの塩
https://hottyyakuten.shop-pro.jp/?pid=125638164

ゲランドの塩
https://amzn.to/468hW1q

▲上へ      ★阿修羅♪ > 近代史3掲示板 次へ  前へ

  拍手はせず、拍手一覧を見る

フォローアップ:


★登録無しでコメント可能。今すぐ反映 通常 |動画・ツイッター等 |htmltag可(熟練者向)
タグCheck |タグに'だけを使っている場合のcheck |checkしない)(各説明

←ペンネーム新規登録ならチェック)
↓ペンネーム(2023/11/26から必須)

↓パスワード(ペンネームに必須)

(ペンネームとパスワードは初回使用で記録、次回以降にチェック。パスワードはメモすべし。)
↓画像認証
( 上画像文字を入力)
ルール確認&失敗対策
画像の URL (任意):
投稿コメント全ログ  コメント即時配信  スレ建て依頼  削除コメント確認方法

▲上へ      ★阿修羅♪ > 近代史3掲示板 次へ  前へ

★阿修羅♪ http://www.asyura2.com/ since 1995
スパムメールの中から見つけ出すためにメールのタイトルには必ず「阿修羅さんへ」と記述してください。
すべてのページの引用、転載、リンクを許可します。確認メールは不要です。引用元リンクを表示してください。
 
▲上へ       
★阿修羅♪  
近代史3掲示板  
次へ